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Jackknifing Disattenuated Correlationa*
W. Todd Rogers

National Assessment of Educational Progress

Despite authoritative support for the use of disattenuated
correlations in certain experimental situations, their actual
use in these situations has been limited. This may partially
be explained by the restricted availability of inferential
procedures due to the lack of adequate distribution theory for
the disattenuated correlation coefficient. \?he jackknife (Tukey,
1958) is a general inferential technique inté;ded to ameliorate
the problems associated with inadequate sampling theory. The
research reported herein is directed at investigating the utility
of the jackknife for establishing confidence intervals on and
testing hypotheses about the disattenuated correlation coefficient
for small samples.

Disattenuated Correlation Coefficients

Classical test theory (Gulliiksen, 1950; Lord and Novick,
1968) is based upon the assumption that an observed score for an
examinee can be regarded as the sum of two unobservable components:
a true T and an error of measurement E. It is assumed that the

error score for one mcasurement is independent of that for another.

* This paper is based upon part of the author's doctoral disser-
tation (Rogers, 1l971) completed at the University of Colorado.
The author is greatly indebted to Dr. Gene V Glass, who, as
thesis advisor, generously contributed his time, guidance and
encouragement.
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Consequently, if it can be assumed that the relationship between
two gsets of measurements is linear, the Pearson~product moment
correlation between two sets of observed scores will be lower
than what it would have been had the measurements been error
free. Spearman (1904a) called this lowering of a correlation

coefficient due to the fallibility of measurement attenuation

and provided the bagic procedure for estimating what the value
of a correlation coefficient would be if the errors of measure-

ment were eliminated. The basic formula is:

(X,Y) ' (1)
P(Tx/Ty) = THTEXN) p(Y,TIT%
where p(X,Y) is the population correlation between observed scores
on test X and test ¥, p(X,X') and p(Y¥,Y¥') are the population values
of the reliabilities of test X and test ¥, and o(Ty,T,) is the

correlation between true scores for test X and test Y. Lord (1957)

called the corrected correlation the disattenuated correlation.

Sample estimates, g(gx,gy), of g(zﬁfzi) are obtained by
substituting in formula (1) sample estimates for p(X,Y), p(X,X'),
and p(¥,Y') which incorporate a consistent definition of error,
i.e., the reliability estimates treat as error those factors
which attenuate the correlation between X and Y. The testing
paradigm simulated in the present study involves administering
both test X and test Y on one test occasion followed by a second

administration after a suitable time has elapsed:
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X1 X,
Yl Y2
An estimate of p(Ty,Ty) consistent with this design is:

r(xllyz) + r(xchl)

| . (2)
r(TxoTy) - ZIr‘Rl,RZ) r(Yl,—L’;)}

Several other formulas for obtaining estimates of E}gx,gy)
consistent with this design have been presented in the litzfa:ﬁre
(Spearman, 1904a, 1907; Yule (see Appendix C in Spearman, 1910);
Lord, 1957). Formula (2) differs from Yule's formula in that
the arithmetic mean of the correlations between test X and test
Y is used instead of their geometric mean. If it can be assumed
that the series of measurements have been conducted with equal
accuracy, then the differences in value between x(X;,Y¥,) and
g(ﬁz,!l) can be attributed to chance and can, therefore, %e
taken care of by taking an average. In contrast to the formulas
of Spearman and Lord, the same administration correlations between
test X and test Y (g(ﬁl,!l) and r(X,,¥,}) are ignored since the
factor of contemporaneity, which can enhance these correlations,
is not present in the estimates of reliability.

Both the correlations between repeated measures (test-retest
reliabilities) and the correlations between distinct measures
include as error variance fluctuations from one test occasion to

the next. In contrast, internal analyses and parallel forms

estimates of reliability generally result in an inconsistent
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definition of error since specificity, which is treated as error
in these reliability estimates, does not lower the correlation
between X and ¥ (Johnson, 1950).

Despite the availability of sample estimators and author-
itative support for the use of disattenuated correlations in
certain situations (e.g., Thouless, 1939; Gulliksen, 1950; Block,
1963; Lord, 1957, 1970; Lord and Novick, 1968; Cochran, 1970),
their actual use has been limited. This may partially be explained
by the restricted availability of inferential procedures due to the
lack of an adequate distribution theory for the disattenuated
correlation coefficient. 1In contrast to the uncorrected coeffi-
cient, the theoretical distribution of x(I,,I,) has not yet been
derived; in view of the complexity of the gém;le estimator, a
thenretical derivation of its sampling distribution probably leads
tc intractable mathematiis, making an exact analytical solution
exceedingly c¢ifficult, il not impossible. Formulas for obtaining
approximate values of the standard error corresponding to the
various sample estimators of p(T,,T,) have been derived by Kelley
(1923, 1947), Shen (1924), and Cafezbn and Dunlap (1930). The
formula for the standard error of 5}25,2!) computed from formula
(2) is:
r(Tyg,Ty) (1 - £2(x;,%,00% (1 - r?(y,,¥,))2

S.E.{r(T,,T )} = ;
X' - YT 2r2(x,%,) 2r2 (Y,Y,)

o Wl 2
. 1 r°(C) + r4(a) + r(xl,xz)r(Yl,Yz)

r2(C)

2r(A)r(C)(r(Xl,X2) + r(Yl,Yz))

ré (C)
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(£2(a) + r2(C)) (L + £(X),X)x(¥,,Y,)

" i 2.
r(X1oxz)r(chY2)
2r (A)r(C) (r(Xy,Xy) + £(¥),¥,))  2r(A) .
r(xl,xz)r(Yl,Yz) £ (C)
e —

1 - r2(x),%y) = r2(@) 1 - r2(y,,Y,) - r2(c)

+
r(X1rXZ) r(YloYZ)

+ 202) - 4r2(0) - r?(x),x,) - r2(y;,v,)
2

-
£ 2 =202 1% (3)

where -

2

’

J:(A) = r(Xl,Yl) + r(xZ,YZ)
2

’

aad N equals the number of subjects.

Formula (3) illustrates the complexity of the standard
error formulas for r(Ty,Ty). The method of logarithmic differen-
tials used in the deri;;tzsns of these formulas is a large sample
procedure (Kelley, 1947, p. 523). The absence of a theoretical
sampling distribution for the disattenuated correlation coefficient
and the guestionable validity of the standard error formulas for

small to moderately sized samples limits the general applicability

of these formulas.

©
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Although a derivation of the theoretical sampling distribution
of r(Ty,T,) has not been obtained, procedures fox making tests of
hypoth;;e;.and constructing confidence intervals in special situa-
tions have been developed. Lord (1957) and McNemar (1958) developed
two different procedures for testing the hypothesis that g(g&,gx) =
1.0. Lord's procedure, developed using maximum likelihood procedures,
is a large sample test. McNemar's test is based upon analysis of
variance. His method, although appropriate for any sample size,
assumcs that the two tests are equally reliable in the population.
Neither of these tests has been generalized to other hypotheses
about g(zx,EY)-

DuBois (1965) suggested that the disattenuated correlation
coefficient was equal to the uncorrected correlation between X and
Y with the error components partialled out, i.e.,

r(Ty,Ty) = r(X,¥ * Ey,Ey) .
Thi: method of computing corrected coefficients and describing its
distributions in terms of distributions of partial correlations
does not seem to be of practical value. In the matrix of correla-
tions DuBois used to determine x(Ty,Ty), he assumed that r(Ey,E,),
r(Ey,Y ), and x(Ey,X) are equal to zero. Although it is assumed
in classical test theory that the corresponding population values
are zero, there is no reason to expect these sample values to be
zero for a particular sample.

The most recent studies of inferential procedures for testiny
hypotheses about p(T,,T,) and establishing confidence limits for

p(ly,Ty) are the Monte Carlo studies performed by Forsyth (1967) ,
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and Forsyth and Feldt (1969, 1970). Based on their finding that
"for suitably large samples, the sampling distribution of g(gx.zy)

is approximately normal in form" (Forsyth and Feldt, 1969, p. 65),
Forsyth and Feldt investigated using standard inferential procedures
based on normal curve theory. The standard errors were calculated
using formulas derived by the method of logarithmic differentials.
The data obtained indicated close agreement between the actual
proportion of confidence intervals enclosing g(zx.gy) and the
nominal level for values of o equal to .10 and .ES._'However, the
sizes of the critical regions corresponding to a two-tail hypoth-
esls test were consistently uneven. To overcome the uneven
distribution of Type I errors, Forsyth and Feldt used the hypothesized
value of E(EK'EX) which, in their computer simulation, was actually
equal to the parameter value used in generating the sampling
distributions. In practice the value of p(Tx,Ty) is not known.

To the extent the hypothesized value differs frgﬁ the actual value
of E(EX'EX)' the Type I errors will be unevenly distributed to an
unknow; dgéree. This fact severely restricts the use of normal
curve procedures for directional hypothesis testing.

Present inferential procedures are restricted to special
situations. The procedures for hypothesis testing developed by
Lord and McNemar have not been generalized to other hypotheses
about E(E&,ZY)- The normal curve procedure proposed by Forsyth
and Forsyth and Feldt appears to be restricted to large samples.
Further, the method of logarithmic differentials used to derive

the formula for the standard error of r(Ty,Ty) is a large sample
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procedure. The jackknife is an inferential procedure intended
to obtain approximate confidence intervals simply in problems
where gstandard statistical procedures may not exist or are

difficult to apply.

The Jackknife

Statistical inference is the process 0of generalizing from
known char;cteristics of a sample to the corresponding but unknown
characteristics of the population from which the sainple was drawn.
Given a sample of observations, the inferential procedure involves
(a) obtaining a function of these nbservations which should
provide an estimate of the parameter of interest, (b) obtaining
a measure of the precision of the estimate, and (c) combining
the obtained estimate and the measure of precision with knowledge
of the sampling distribution of the estimator to make probabilis-
tic statements about the value of the parameter. There exist
situations in which it is possible to determine an estimate of a
parameter but yet fcr which it is difficult, if not impossible,
to derive a measure of precision or for whicii the sampling dis-
tribution of the estimator is either not known or else very complex.
In these situations one cannot often simply use known standard

procedures to obtain an idea of the accuracy of the estimate. The

jackknife (Tukey, 1958) is a procedure which may be used in

situations of this type to obtain approximate confidence intervals
simply in terms of the estimator of the parameter. Tukey adopted
the name jackknife since, like a boy scou:'s jackknife, the

procedurc is intended to be generally applicable but, like the

e,



scout's jackknife, many of its jobs could be better done by a
specialized tool, particularly if that tool were available.

The jackknife depends upon dividing a set of data into
groups, obtaining estimates from combinations of these groups,
and averaging these estimates. Let 0 be the unknown parameter,
and let {X),X,,
distributed observations with continuous density function Ee,

«++.1Xy} be a sample of N independent, identically

which depends upon 6. Suppose a method for estimating 6 is
available. The jackknife requires that the N observations be
divided into k (k 2 1) groups of size n (n 2 1) such that N = nk,

ioeo' (Elooo’&_l;x-r}- <+ 1,.0.&2&; 000; _}E (l{_ - l).xl o+ l’ ...;xt_'n). Let

§ denote the estimate of § based on all N observations and let
é X i=1, ***,k, denote the estimate of § based on the (N - n)

observations in the subsample obtained by omitting the ith group.
New estimates of 8, called pseudo-values, are formed by taking

a lir.ear combination of @ and the § 1S

f#-

® 3

8 =k - (k=-1)8 ., i=1, ***,k.
1 -]

The jackknife estimate of § is the mean of the pseudo-values:

(e B
&= o>

*i

D>
*
"
(=

The jackknife estimate, §,., was first intiroduced by Quenouille
1
(1949, 1956) as a method for reducing bias of the form { in para-

metric estimation. Tuksy proposed that in most situations the k
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pseudo=-values, é*l' cees é*k' could be treated as k approximately
independent, identically distributed observations from which an
approximate t - statistic confidence interval for @ could be
constructed. An estimate of the standard error of the jackknife

estimate 48 given by:

R
8§, o{i=2_* *o | . (4)
*, k(k = 1)
- -
Tukey's proposal implies that the quantity
8. -0
I (5)
Se*

the jackknife statistic (Collins, 1970, p. 53), is approximately
distributed as a Student - t variate with k - 1 degrees of freedom.

The key idea is that, in a wide variety of problems, the

pseudo-values can be used to set approximate confidence

limits, using Student's £, as if they were the results

of applying some complex calculation to each of k

independent pieces of data. The words "as if" are

vital here; Student's t performs well in many circum=-

stances where the f«; deviate substantially from indepen-

dence. (Mosteller and Tukey, 1968, p. 135).

A comment is required on the degrees of freedom. The correct
nunber of degrees of freedom for the variance of the jackknife
estimate may be less than k - 1. For example, jactkknifing the
median of a sample of size N = 2m, m a whole number, by deleting
one observation at a time results in only one deqgree of freedom
and not 2m - 1. If any one observation is deleted in the upper

half of the 2m observations ranked according to size, the median

ERIC 14
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of the remaining 2m - 1 observations will be the mth observation
(counting up from the lowest). For any observation deleted from

the lower half of the distribution, the median will be the (m + 1l)st
value in the ranked distribution of observations. This implies

only one degree of freedom for (Mosteller and Tukey point out

83
that by jackknifing in groups in~;ﬁich n > 1, more than two dife-
ferent pseudo-values will occur.) Mosteller and Tukey (1968,

p. 136) recommended the following general rules of thumb for
determining the proper degrees of freedom for the jackknife

estimate:

¢) Count the number of different numbers appearing as
pseudo-values, subtract one, and use the results
as degrees of freedom.

cl) If slight changes in the basic observations--as
when values by their nature either 0 or 1 are made
-0.001, + .002, 0.997, or 1.004--would make two
pseudo=-values different, they should not be
considercd "the same" in applying rule (¢). « . .

¢2) If carrying more decimals in the computation would
have made two pseudo-values different, they should
not be considered "the same" in applying rule (c).

Jackknifing Functions of Statistics

Functions of statistics can be diviced into two categories:
linear and non-linear. For linear functiong, the order of operation
for obtaining the jackknife estimate does not matter. The jackknife
estimate of a linear combination of statistics is equal to the
linear combination of the jackknife estimate of each of the

statistics that enter into the linear combination, i.e., if

e 12
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For non-linear functions, the order of operations does matter.

I1£f §° = f(@l, @ ) ""ém) is a non-linear function of the statistics

b

810 B0 ,.,,ém, then

Mw

Ba. ¥ £y, 4 8y veedbo Y,

For example, c¢nansider the logarithmic function

6 = loy (8) .

~ o)

8y; = k log {6} - (k = 1) log {6_1}

k .
. I 8Z
6y =4i=1 "4
. k
k Py A
Z (k log {6} - (k = 1) log {8  })
= 3i =1 -1l
-
k .
R I log {6 ,[}
=k log {6} - (k =1) i=1 -1
k
= l0g ok .
K 5(k = 1)/k
i=11"1
L —

bar ool fae e

o l. L | ST LA

¢ Ve Mal e
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But
- . -
¢ 6
R LR
log {6« } = log K
:A - k 6‘-1
« log | k6= .L"_E_L).i L 6.y
i ok -1
# log —8
Kk = 1)/
i=1 %
Therefore,

6°, # log {f,.}+

The above inequality suggests two alternatives for jack-
knifing non-linear functions. First, jackknife the entire

function:

’ ooo,Qm ) .

kf(el, 62, oooem) - (k -l)f(el_i' 92- “i

i

Second, form the function of the pseudo-values of each term in

the combination:

9**1 = f(el*iv Gz*i' o0 0 e*i)o

Aruitoxt provided by Eic:
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The mean of these pseudo-values yields the jackknife estimate: ;

.8 |
6, =4e1 "1, é
° X

the standard error of the jackknife estimate for both methods

is calculated using formula (4).
Miller (1964) gave the conditions under which the jack-

La B o siadveisin D o tady SRR vt e B 4

knife estimate of a function of the

sample mean is asymptotically, normally distributed with the
correct mean and variance. Arvensen (1969) extended Miller's
work to functions of U - statistics and Brillinger proved ;
that the jackknife was asymptotically correct when jackknifing

maximum likelihood functions. Examples of the successful

application of the jackknife procedure include ratio estimation

(Mosteller and Tukey, 1968), variances computed from one dimen-

N2

sional arrays (Miller, 1968) and two dimensional arrays (Collins,
1970) and analysis of sample surveys (Brillinger, 1964; Arvensen,
1969; Frankel, 1971; Naticnal Assessment of EJducational Progress,
1970). However the jackknife is not foolproof. Difficulties were
illustrated when the sampling distribution of the statistic to be
jackknifed was asymmetrical or had a straggling tail (Miller,1964).
Collins (1970) found that the jackknife performed poorly on the
gyeneralizability coefficient (a function of variance components).
Mosteller and Tukey (1968) warned of problems when the possible

values of the parameter to be estimated are restricted to an

ERIC
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interval or half-line. They (Mosteller and Tukey, 1968, pp.
137-138) summarized thelr discussion on jackknifing statistics
as follows:

There may be some advantage in jackknifing one expression
of a given resulg rather than another (as when we jack~
knife log y or ¥4 instead of y).

We know little about which choices of expression tend to
polish up the behavior of the jackknife. what evidence
we have suggests that:

bl) It is very desirable to avoid situationa where the
sampling distribution of the quantity jackknife
has an abrupt terminus or where the possible values
of %tgiestimand are restricted to an interval or
hal"‘ Nnee.e « ¢

b2) It is desirable to avoid sampling distributions
with one or more straggling tails.

b3) It is probably desirable to avoid markedly unsym-
metrical sampling distributions.

In summary, we can use the jackknifing of several numerical
results to tell us about any combination of these results.
Our conclusions will usually differ somewhat from those
reached by jackknifing that combination directly. This
ofters us choices that sometimes can allow us to improve
our conclusions.

The disattenuated correlation coefficient is a non-

linear function of the four other correlation coefficients:

r(Xy),¥3) + r(Xy,¥y)

r(Ty,Ty) = -
Xrey 2{r(X1,x2)r(Y1,Y2)}""

The possible values of P(Ix,Ty) are restricted to the closed
interval [-1,1]. Based on the findings of Forsyth and Feldt
(1969), the sample disattenuated correlation coefficient for
small samples is non-normally distributed. As stated previously,

present inferential procedures are limited to special situations.

16
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The succassful application of the jackknife in this situation
would permit the use of inferential methods where none are

presently available.

Method

Several computer simulations were performed to investigate
the utility of the jackknife for establishing confidence intervals
on and testing hypotheses about the disattenuated correlation
coefficient for small samples. Forty-five combinations of
Q(EK'E!) (.00, .90, .80, .50, and .00), ,(X,X') and ,(¥,¥')
(.90, .80; .80, .80; .90, .50), and N (15, 30, 60) were included.
A welghting of the factors of economy and accuracy resulted in
a decision to include 1000 points in each sampling distribution
of the jackknife statistic¢. All runs were made on a Control
Data Corporation (CDC) 6400 System provided by the University of
Colorado Graduate School Computing center.

The theory of the jackknife implies that the jackknife
statistic is approximately distributed as a Student - t variate

with the appropriate degrees of freedom. For most practical
problems, the most crucial area of fit is in the tails of the
distributions. Therefore, to test the validity of the jackknife,
the theoretical and actual cumulative proportions of jackknife
statistics which were at or below the .005, .0l10, .025, .050,
.100, .900, .950, .975, .990, .995 percentile points in the
Student - t distribution with the k - 1 degrees of freedom were

compared. For each run, k = N,

17
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rive initial simulation runs, corresponding to the five
values of o(gx.ry). p(x X') = .90, p(Y.Y') - .50, and N = 15,
wore performed for r( .T ) and for each of six power functions,
two logarithmic funetions, and one trignometric function (see
Table 2, page 22). Forty-five simulations, corresponding to all
the combinations of the input parameters, were performed for
r(Tx.T ) and for the transformation of r(_x.TY) which yielded
the best solution for the five initial simulations. The empirical
sampling distribution of r(Ty,Ty) was generated for each of the
45 combinations of input par;ﬁeZQrs to obtain a description of

the statistic jackknifed.

Results

Characteristics of the Sampling
Distribution of x(T,T,)

The mean, vari;hc;, skewness, and kurtosis

for each of the 45 sampling distributions of

r(Ty,Ty) are presented in Table 1. The skewness measure equalled
the_thz¥d moment about the mean divided by the cube of the
standard deviation of the sampling distribution of r(Ty,Ty).
The kurtosis equalled the fourth moment about the mean-&i;ided
by the fourth power of the standard deviation of the sampling
distribution of r(Ty,Ty).

The means of tgé ;émpling distributions of 5(25'21)
tended to be lower than the parameter values except for the case

in which the reliabilities were most different (viz., p(X,X') =

18
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.90, p(¥,X') = .50). 1In this latter case, there was a general
tendency for the mean of the sampling distribution to overestimate
gﬁgé,g!). The bias in gﬁgx,gy) decreaséd as the sample size
increased. For example, with N = 15, the bias was approximately
.058, while for N = 60, the bias was less than .009.

The variance of the sampling distributions of x(Ty,T,)
decreased as the value of 2}35.2!) increased for fixed-QaIﬁes
of the reliabilities and as the value of N increased. The
variances ranged between .0025 and .1402 for N = 15, between
.0006 and .0623 for N = 30, and between .0003 and .0282 for
N = 60. Within each combination of g(gx,gy) and N, the largest
variance was obtained with p(X,X') = .90 and p(¥,¥') = .50.

The skewness and kurtosis of the sampling distribution of
r (T ,Ty) decreased as the value of N increased. For each
com;in;tion of N and pair ‘or reliabilities, the r(Ty,Ty) dis-
trib.tions were positively skewed with E(ZX'EY) = 17007 but with
gjgx,gy) = ,00, the distributions were neg;ti;ely skewed. With

R(EX'EY) between zero and one, the distributions were negatively
ske;ed“for 2(5,5') = ,90, g(x,z') = ,80 and for £(§,§') = ,80,
p(y,¥') = .80, For p(X,X") = .90, p(¥,¥') = .50, the distribu-
tions tended to be positively skewed as the value of E(Ex'zy)
increased and as the value of N decreased. -

with o(Ty,Ty) greater than zero, the sampling distributions
were leptokurzic—for each combination of N and pair of reliabilities.
In general the kurtosis increased as the value of p(Tx,Ty) increased.

wit.ailn cacn conrinacion of H an R(EX'TY)' the kurotsis was, in

21
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general, greatest with p(X,X') = .90, p(¥,¥') = .50.

Findings Related to the Jackknife.
The five initial simulations performed for each of the

e et TS e S0 ok 1

statistics jackknifed revealed that the performance of the
jackknife was not consistent across the five values of p(Iyx,Ty).
For example, there was closer agreement between the theore:ic;l
and actual cumulative proportions of jackknife statistics

produced by the jackknife on r(Tyx,Ty) for p(Ty,Ty) = .00 (mean

ek A B0 taee e stvaie ant by SRR e, oAt AT Lok o

absolute difference equalled .0147) than for p(Tx,Ty) = 1.00
(mean absolute difference equalled .0249). Furthermore, the §
performance of the jackknife on the transformations investigated
was not consistent. With g(gﬁfgﬁ) = .90 the jackknife on

£9/5(g§,2¥) yieided superior results to the jackknife on x’7/5(Ix,Ty)., f |
but with p(Tx,ly) = .50, the superiority was reversed. -

The overall mean absolute difference across all five simula-

tions performed for each of the 11 statistics jackknifed is -y
reported in Table 2. Jackknifing x(Ty,Ty) by parts and jackknifing |
power functions of g(gé,gz) in which :he_éxponents were less than

one or greater than two resulted in noticeably inferior solutions .

in comparison to the solution on x(Tx,Ty). The jackknife results

obtained for the remaining transformations were reasonably com-
parable. The mean of the absolute differences between the
theoretical and actual cumulative proportions of jackknife
statistics at the 10 points of comparison across all five simu-
lations ranged between .0160 and .0219, with the best solution
obtained from the jackknife on r7/5(Tx,Ty).

Simulations for each of the 45 combinations of p(T,,T,),

B(x,x'), E(Y,Y'), and N were performed for the jackknife on

ERIC 22
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TMLE 2

OVERALL °f AN ABSOLUTE DIFFERENCES OBTALNED
FR M FIVE INITIAL STMULATIONS

Statistic Ovarall Mean Absolute Difference®
rgrx.ry) £ 0.0188
rqlb(TX,TY) .0160
REATTIR .0207

e | 0295
r (TX’TY) .
r:(Tx,TY) .0380
rlla(Tx,TY) .0620
r /5(Tx,TY) .0826

b
loglo{r(Tx,TY) + c1} .0219
c. + r(T,,T,) 1 b
%1n[c1 - r(Tx'TY)] .0196

2 XY

2 ol Ty Ty) b 0179
RMAX
r(Tx,TY) by parts 0.2364

e overal) mean absolute difference equals the mean of the
absolute differences at the .005, .010, .025, .050, .100, .900,
.950, .975, .990, and .995 percentile points of the t-distribu-
tion with 14 degrees of freedom summed across the five initial

simulations.

bcl = .00001 plus the absolute value of the minimum
of r(Tx,Ty) and the jackknife estimate of p(Tx,Ty)
for earh FTimulation performed. = =
c2 = .00001 + RMAX.
RMAX = maximum of r(Tx,Ty) and the jackknife estimate
of p(Tx,Ty) for each TimTlation performed.

<3
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57/5(gx,gw) and 5‘3&}3{" The jackknife on g(gi,g!? was inves-
tigate; fafther to see whether for other values of the input
parameters the jackknife results would converge to the results
obtained from jackknifing 57/5(2§f3!). The results of these
simulations are reported in Tables 3-17. Each table consists

of a comparison between the theoretical and empirical cumulative
proportions of jackknife statlstics at 10 points of the t-
distribution with the correct degrees of freedom. To facilitate
the comparison between the two solutions, the corresponding
results for r(Ty,Ty) and 57/5(25.23) are presented in each table.
In each table, ;blﬁhn one contains—£he theoretical cumulative
proportion p at each of the 10 points. Column two indicates the
proportion of jackknife statistics p which were at or below each
percentile point for E(Ex'!y)° Column three contains the dif-
ference in cumulative prgéoziion (theoretical minus actual) at
each of the 10 points. Columns four and five contain the cor-
responding information as in columns two and three for 57/5(2x,2¥).

For example, from Table 17, the actual proportion of jackknife

60 is

statistics at or below the 2.5th percentile point with N
.033 for r(Ty,Ty). In this case,the actual proportion exceeds

the theoretical proportion by .008. For 57/5(gx,2¥), the actual
proportion of jackknife statistics at or below :he-Z.Sth percentile
point with N = 60 is .007. For this case, the theoretical
proportion exceeds the actual proportion by .018. The means of

the absolute differences between the theoretical and actual

cunulative proportions at the .005, .010, .025, .050, .100, .900,

.y
Q ‘}4
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TABLE 3

COMPARISON OF ACTUAL (p) AND THEORETICAL (p) CUMULATIVE
PROPORTIONS AT 10 POLNTS Of Tilk t-DLSTRIBUTION
INPUT PARAMETLRS: p(Tx.TY) = 1.00

p(X,X*) = 97
p(Y,Y"?) = .80

L] L] L) L]

. P P-P 7 P 7). ,P =P

N =15, d.f. = 14

PO R R A SR

ERIPERT ™ - RO

0.005 0.003 0.002 0.003 0.002
.010 004 .006 .004 .006
.025 .010 015 .01l .014
.050 .021 .029 .022 .028
.100 .056 044 .059 041
.900 .968 - ,068 .968 - J0Ff,
.950 .990 - .040 991 - L4l
975 .994 - ,019 .995 - .020
.990 .998 - .008 .998 - .008
0.995 0.999 -0.004 0.999 ~0.004
N = 30, d.f. = 29
0.005 0.000 0.008 0.000 0.005
.010 .001 .009 .001 .009
.025 .016 .009 .016 .009
.050 .030 .020 .032 .018
.100 .086 .014 .087 013
.900 .951 - ,051 .953 - ,053
.950 285 - .035 .987 - 024
.875 .999 - .024 .999 - 024
990 1.000 - 010 1.000 - .010
0.995 1.000 -0.005 1.000 -0.005
N = 60, d.f. = 59
0.005 0.000 0.005 0.000 0.005
.010 .001. ,009 .002 .008
020 14 0]l (O14 011
L0590 035 015 036 .0l4
100 .093 .Q07 095 .005
.900 921 - 021 923 - 023
«950 .970 ~ .020 971 - .021
W75 0L - .016 99 ! - ,016
9490 997 - 007 997 - 007
0,995 0.993 -0.003 0.998 -0.003
Q
ERIC <o
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TABLE &

COMPARISON OF ACTUAL (p) AND THEORETICAL (p) CUMULAT'VE
PROPOKTIONS AT 10 POINTS OF THE t-DISTRIBUTION
INPUT PARAMETERS: p(rx.rYY'- 1.00

p(X,X") = .80
p(Y,¥%) = .80

P p=-p 7/5 p 7/59"'9
P r(Tx.TY) r(Tx.TY) r (?x.ry> T (rx.ry)
N =15, d.f. = 14
0.005 0.002 0.003 0.002 0.003
.010 .002 .008 .002 .008
.025 .007 .018 .009 .016
.050 .018 .032 .020 . .030
.100 .050 .050 .051 .049
.900 .968 - .068 .970 - .,070
.950 .993 - .043 4993 - .043
975 .997 - .022 +497 - .022
.990 .999 - ,009 .999 - .009
0.995 0.999 -0.004 0.999 -0.004
N = 30, d.f. = 29
0.005 0.001 0.004 0.001 0.0u:
.010 .002 .008 . .002 .008
.025 .008 .017 .010 .015
' .050 .022 .028 .022 .028
.100 074 .026 .079 .021
.900 <946 ~ 046 .949 - .049
.950 .988 - ,038 .988 - .038
975 .599 - .024 1,000 - .025
.990 1.000 - .010 1.000 - ,010
0.995 1.000 ~0.005 1,000 -0.005
N = 60, d.f. = 59
0.005 0,000 0.005 0.000 0.005
.010 .002 .008 .002 .008
L0275 017 008 .018 .007
.05 039 011 .039 011
.100 .089 011 .092 .008
.900 .923 - .023 927 -~ .027
950 977 - .027 .978 - .028
975 993 - .018 .993 - .018
.990 .999 - ,009 .999 - ,009
0.995 1.000 -0.005 1.000 -0.005

I Y PO © e ML el @ e S e SE MW o Grealie .
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TABLE §

COMPARISON OF ACTUAL (p) AND T! SORETICAL (p) CUMULATIVE
PROPORTIONS AT 10 POINTS 0 THE t~DISTRIBUTION

INPUT PARAMETERS: 0(Ty,' YT = 1,00

2(X,X%) = .90
o(Y,¥%) = .50

L] "

P PP 7, ) 7y5 B =P

Nwl5, d.f. = 14

0.005 0.000 0.003 0.001 0.004
.010 001 .004 .002 .008
.025 .013 .012 .020 «005
+050 +035 015 .045 +005
.100 .078 +022 .092 008
.900 996 - .096 .996 - .096
950 1.000 - .050 1.000 - .050
975 1.000 - .025 1.000 - .025
990 1.000 - .010 1.000 - .010

0.995 1.000 -0.005 1.000 -0.005

N = 30, d.£f. = 29

0.005 0.000 0.005 0.000 0.005
.010 .004 .006 .004 .006
.025 .011 .014 .017 .008
.050 .040 .010 .049 .001
.100 .094 .006 .106 - ,006
.900 594 - .094 995 - .095
950 999 - .049 1.000 - .050
975 1.000 - 025 1.000 - .025
.990 1.000 - .010 1.000 - .010

0.995 1.000 -0,005 1.000 -0.005

N = 60, d.L. = 59

0.005 0.003 0.002 0.004 0.001
010 QU0 .004 013 - .003
025 20 - ,003 031 - .006
.050 .060 - .010 062 - .012
100 A17 - .017 122 - ,022
.900 982 - .082 . 984 - .084
950 99 - 049 999 - ,049
975 1.000 - .025 1.000 - 025
990 1.000 - .010 1.000 - .010

0.795 1.000 ~0.005 1.000 -0.005

@ Emu - MW Amews o b e WSRO
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TABLE 6

COMPARISON OF ACTUAL (p) AND THEORETICAL (») CUMULATIVE
PROPORTIONS AT 10 POINTS OF THE £-DISTIBUTLON
INPUT PARAMETERS? o('rx.'r,ﬁ‘ - .90

D(X.X') - ,90
Q(YOY‘) « ,80

"N

. p-P 7/5 p 7/5 p=")

N =15, d.f. = 14

0.005 0.000 0.005 0.001 0.004
.010 .001 .009 .001 .009
.025 .005 .020 .006 .019
.050 011 .039 017 .033
100 .030 .070 .036 064
.900 807 .093 .813 .087
950 877 .073 . 880 .070
975 913 .062 916 059
990 <943 047 947 043

0.995 0.964 0.031 0.966 0.029

N = 30, d.f. = 29

0.005 0.001 0.004 0.001 0.004
.010 .001 .009 .002 .008
025 .003 .022 .N06 .019
.050 .009 041 011 .039
.100 .035 065 .038 .062
.900 +813 .085 .816 .084
950 .874 .076 .880 .070
975 917 058 .920 .055
990 946 044 947 .043

0.995 0.959 0.036 0.961 0.034

N = 60, d.f. = 59

0.0..9 0.000 0.005 0.000 0.005
010 .000 .010 .002 .008
000 011 Ol .013 012
050 027 028 025 025
. 100 .062 .038 066 034
. 900 .873 027 874 .026
.950 919 .03l 922 028
975 9413 .032 945 030
.990 908 022 909 .021

0.995 0.975 0.020 0.976 0.019

Wt @ s - v A cm s WNED B il o W W B mhna . - mp @t
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TABLE 7

COMPARISON OF ACTUAL (p) AND THEORET1:AL (o) CUMULATIVE
PROPORTIONS AT 10 POINTS OF THE {-DISTRIBUTION
INPUT PARAMETERS: 0(Ty,Tys = .90

p(X,X) = .80
O(Y.Y‘) « ,80

~ A A ~

- P Pp-D 7 P 2,. P =P
" £(@yTy) F(TTy) Isqrer) ® 'sqry,y)
Nw 15, df. = 14
0.005 0.002 0.003 0.003 0.002
.010 .002 .008 003 .007
.025 .004 .021 .007 .018
.050 .010 .040 ' ,016 .034
.100 .035 .065 .048 .052
.900 .860 .040 .865 .035
.950 ,912 .038 .18 .032
.975 . .943 .032 947 . .028
.990 .964 .026 .967 .023
0.995 0.972 0.023 0.973 0.022
N= 30, d.f. = 29
0.005 0.000 0.005 0.000 0.005
.010 .001 .009 .001 .009
.025 .002 .023 .003 .022
.050 .006 044 .011 .039
.100 .039 .061 042 .058
.900 .839 .061 846 .054
.950 .902 043 .902 .048
.975 .940 .035 .943 .032
.990 ,964 .026 ,967 .023
0.995 0.976 0.019 0.979 0.016
N = 60, d.f. = 59
0.005 0.001 0.004 0.001 0.004
010 .001 .009 ,002 .008
0.5 .008 ,017 .008 .017
.050 .020 ,030 .020 ,030
.100 .062 .038 . 066 ,034
.900 867 .033 . 868 ,032
.950 .019 .031 .923 027
75 .949 L0206 949 .026
.990 967 ,023 .069 .023
0.995 0.976 0.019 0.978 0.017

B L LA Bt Aladiadhiaad st - e v B @GR e Ee MSE G W MM D P e ttmnt]
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TABLE 8

COMPARTSON OF ACTUAL (p) AND THEORETICAL (p) CUMULATIVE
. PROPORTL(..8 AT 10 POINTS OF TIUE t-DISTRIBUTLION
INIJT PARAMETLRS: p(Tx.TYT - ,90

p{X,X*) = .90
ﬂ(Y.Y‘) = ,50

" ~

' p PP 7, P 7)s P = P
P ”(Tx'TY) ”(Tx"r!’ v (T Ty) T (Tx.'l‘Y)

Nwl5, d.f. = 14

0.005 0.001 0.004 0.003 0.002
.010 .002 .007 .007 .003
.025 .009 .016 014 .011
.050 .016 .034 .023 027
.100 «047 .053 067 +033
.900 +960 - .060 .961 - .061
+950 979 - .029 .980 - .030
975 .989 - .014 991 - .016
.990 «993 - .003 .993 - .003

00995 00996 '00001 00997 -00002

N = 30, d.f. = 29

0.005 0.000 0.005 0.000 0.005
.010 .000 .010 . <003 .007
.025 .009 .016 .012 .013
.050 .019 .031 .025 .025
.100 .057 043 077 .023
.900 <946 - 046 «954 - 054
950 976 - .026 .J83 - .033
975 .992 - .017 .992 - .017
.990 .998 - .008 .998 - .008

0.995 0.998 -0.003 0.999 -0.004

N =80, d.f. = 59

0.005 0.001 0.004 0.002 0.003
010 .002 .008 .006 004
020 008 017 .010 015
050 028 .022 .036 014
100 .0068 .032 076 024
90U -917 -~ 017 923 - .023
«950 <90y -~ .019 971 - 021
97 983 ~- L,008 +9806 - .1
+990 <995 - .005 997 - 007

0.995 0.998 ~0.003 0.999 -0.004

30
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TABLE 9

COMPARISON OF ACTUAL (p) AND THEORETICAL (p) CLMULATIVE
PROPORTIONS AT 10 POINTS OF THE t=-DISTRIBUTION
INPUT PARAMETERS: o(rx.'rYS‘ - .80

p(X,X*) = .90
p(Y,Y*) = .80

) A [

P P=p 7/5 p 7/5 P=-9)
p . t(Tx.TY) r(TX’TY) T (Txl Y) 9 (Txl Y)

N=15, d.f. = 14

0.005 0.000 0.005 0.005 0.000
.010 002 .008 .008 .002
.025 .008 .017 .018 .007
.050 017 .033 031 019
.100 044 .052 .067 .033
.900 809 .091 .816 .084
950 . 880 .070 .883 .067
975 915 .060 919 .056
.990 .939 051 945 045

0.995 0.951 0.044 0.952 0.043
N=30, d.f. = 29

0.005 0.001 0.004 0.001 0.004
.010 .001 .009 .003 .007
025 .005 .020 012 .013
.050 .015 .035 .020 .030
.100 .039 .061 .049 .051
.900 852 .048 .858 .042
950 .900 .050 .901 049
975 .924 .051 929 046
990 .948 042 «952 .038

0.995 0.964 0.031 0.969 0.026

N =60, d.f. = 59

0.005 0.000 0.005 0.002 0.003
010 003 007 004 006
025 .007 .018 .010 015
050 .019 031 .023 .027
.100 .053 047 .059 .041
900 «855 045 .858 042
«950 914 .036 922 028
R ) «951 024 .952 023
<990 990 017 975 015

0.995 0.995 0.017 0.979 0.016
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TABLE. 10

COMPARISON NF ACTUAL (p) AND THEORETICAL (p) CUMULATIVE
PROPORTLONS AT 10 POINIS OF 'THE t-DISTRIBUTION
INPUT PARAMETERS: p(rx.'rYT - .80

p(X,X*) = .80
p(Y,Y’) = .80

. A ~ A a

S 4 P-P 7/5 P 7/5 p="D
p r(TX’TY) r(TX'TY) 19 (TX’TY) r (Tx’.ry)
N« 15, d.£. = 14
0.005 © 0.003 0.002 0.001 0.004
.010 .004 .006 .007 .003
.025 .008 017 017 .008
.050 019 031 .038 . .012
.100 046 .054 .073 .027
.900 .822 .078 .830 007
«950 . 880 .070 .885 .065
975 911 .064 916 : .059
«990 941 .049 944 .046
0.995 0.953 0.042 0.956 0.039
N« 30, d.f. = 29
0.005 0.002 0.003 0.004 0.001
.010 .003 .007 .007 .003
0.5 .007 .018 .009 .016
.0%0 .015 .035 .020 .030
100 .040 .060 .053 047
900 .833 .067 .839 061
«950 . 882 .068 892 .058
975 .926 .049 933 042
990 947 043 954 .036
0.995 0.965 0.030 0.970 0.025
N= 60, d.f. = 39
0.005 0.000 0.005 0.000 0.005
G0 . 000 010 .000 .010
025 005 .020 0re 013
«050 025 025 .033 017
-« 100 +060 .040 008 .032
900 801 049 . 8359 041
Y20 915 0135 .920 .030
075 944 W31 948 027
Y90 902 028 905 .028
0.995 0.974 0.021 0.976 0.019
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TABLE 11

COMPARLSON OF ACIUAL (p) AND TUEORETICA' (p) CIRMULATIVE
PROPORTIONS AT 10 POINTS OF THE t~D.STRIBUTION
INPUT PARAMETERS: o('rx.'ry‘i‘ - .80

p(X,X*) = .90
p(Y,¥”*) = .50

L]

P p-b 7/ P 7/g P = B
P r(Txi.ry) r(TX'TY) 9 (Tx.TY) r (Txiry)

N=15, d.£. = 14

0.005 0.002 0.003 0.008 -0,003
0010 0003 0007 0012 - 0002
.025 .009 .016 .019 .006
+050 .014 .036 .040 .010
.100 .050 .050 091 .009
+900 925 - .025 931 - .031
950 +957 - .007 .961 - .01l
975 979 - .004 .982 - .007
+990 .989 .001 .989 .001

0.995 0.989 0.006 0.990 0.005

0.005 0.000 0.005 0.004 0.001
.010 .003 .007 * .006 004
.025 .007 018 .012 . .013
.050 .013 037 .027 .023
.100 .052 .048 .066 .034
.900 .899 .001 910 - .010
930 947 .003 .955 - .005
975 971 .004 9717 - .,002
.990 .984 .006 .986 .004

0.995 0.990 0.005 0.992 0.003

N=60, d.f. = 59

0.005 0.000  0.005 0.001 0.004
010 .001 .009 .003 .007
005 011 .014 .012 .013
.050 .024 .026 L0732 .018
.100 .066 .034 .083 .017
.900 886 .014 .892 .008
L950 932 . .018 .943 .007
975 .962 .013 .967 .008
L9490 L9862 008, .9 84 .006

0.99% .986  0.009 0.989 0.006
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TABLE 12

COMPARISON OF ACTUAL (p) AND THEORETICAL (p) CUMULATIVE
PROPORTIONS AT 10 POINTS OF THE t-DISTRIBUTION

INPUT PARAMETERS: p(Tx,TY) = .50

p(X,X°) = ,90
p(Y,Y°) = .80

S P=P 7/s P 7/5 P-P
p r(Txl TY) r(TxOTY) r (TxlTy) r (TxlTy)
N=15, d.f. = 14
0.005 0.001 0.004 0.009 -0.004
.010 004 .006 017 - .007
.025 011 014 .045 - .020
.050 .023 027 .073 - .023
.100 .058 .042 .123 - .023
.900 .818 .082 .838 .062
950 . 874 .076 .888 .062
975 .908 .067 923 .052
990 .939 .051 «957 .033
0.995 0.961 0.034 0.973 0.022
N= 30, d.f. = 29
0.005 0.000 0.205 0.023 -0.018
.010 .003 .007 .032 - .022
.025 .011 014 .051 - .026
.050 .030 .020 .069 - .019
.100 .069 031 .108 - .008
.900 .831 .069 . 844 .056
950 . 884 .066 .902 .048
975 .923 .052 937 .038
.990 .952 .038 .964 .026
0.935 0.965 0.030 0.973 0.022
=60, d.f. = 59
0.005 0.004 0.001 0.012 -0.007
010 .006 .004 017 - ,007
025 .012 .013 .029 - .004
.050 .027 .023 .051 - .001
.100 .076 .024 .110 - .010
.900 .873 027 . 883 017
.950 .920 .030 .932 .018
975 .958 .017 .964 011
.900 971 .019 .980 .010
0.995 0.982 0.013 0.985 0.010
Q
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TABLE 13

COMPARISON OF ACTUAL () AND THEORETICAL (p) CUMULATIVE
PROPORTIONS AT 10 "OINTS OF THE t-DISTRIBUTION
INPUT PARAME iERS: p(rx.rfi'- .50

p(X,X°) = .50
p(Y,Y*) = .80

" L) "~ "

P p=-PpP 7/5 P /s P=P
p r(TX’TY) r(TX’TY) 4 (TX.TY) T (TxOTY)
N =15, d.f. = 14
0.005 0.006 0.001 0.012 -0.007
.010 .009 .001 .025 - 015
.025 .021 .004 047 - .022
.050 .033 017 .068 - .018
.100 054 .046 .109 - .009
.900 .835 .065 .858 .042
+950 . 887 .063 .896 .054
975 915 .060 .928 047
«990 .934 .056 <945 «045
0.995 0.949 0.046 0.964 0.031
N=3, d.f. =
0.005 0.002 0.005 0.031 ~0.026
.010 .006 .004 035 - .028
.025 .017 .008 047 - .022
.050 .029 021 .066 - .016
+100 .069 .031 .105 - .005
.900 .851 .049 .871 .029
«950 .908 .042 .920 .030
975 .93 .042 .953 022
.990 .964 .026 972 .018
0.995 0.973 0.022 0.979 0.016
N=260, d.f. =
0.005 0.004 0.001 0.012 ~-0.007
010 .005 .005 017 - .007
025 011 014 .028 - .003
.050 .030 .020 .064 - .014
.100 .070 .030 .096 - 004
.900 +867 .033 . 880 .020
050 921 .029 .928 .022
7H 947 .028 .961 014
Y30 .969 021 974 016
0.995 0.976 0.019 0.982 0.013
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TALLE 14

COMPARISON OF ACTUAL (p) ND THEORETICAL (p) CUMULATIVE
PROPORTIONS AT 10 POl I'S OF THE t=-DISTRIBUTION
INPUT PARAMETEI .: D(Tx,TY) = .50

p(X,X°) = .90
p(Y,Y°) = .50

- ~ ~

| A PP 7). P 75 P =P
N =15, d.f. = 14

0.005 0.007 ~0.002 0.014 -0.009
.010 .010 .000 .019 - .009
)25 .016 .009 .043 - .018
.050 02°¢ .025 .066 - ,016
.100 .052 048 117 - .017
.900 .895 .005 915 - .015
.950 .934 .016 .942 .008
975 «953 .022 .960 015
.990 971 019 .980 .010

0.995 0.980 0.015 0.981 0.014

N= 30, d.£. = 29

0.005 0.003 0.002 0.023 -0.018
.010 .003 .007 .035 - .025
.025 .012 .013 .056 - .031
.050 .025 .025 .078 - .028
.100 .057 .043 A27 - .027
.900 . 891 .009 .908 - .008
.950 .930 .020 .943 .007
.975 .956 .019 .967 .008
.990 974 .016 977 .013

0.995 0.978 0.017 0.987 0.008

N = 60, d.f.

0.005 0.003 0.002 0.020 -0.015
010 .008 .002 022 - ,012
05 021 004 038 . - .012
<50 032 018 055 - 005
.100 0065 .035 .100 .000
.900 . 870 .030 .893 .007
. 950 .927 .023 «943 .007
975 957 018 9673 012
«990 .973 017 978 .012

0.995 0.979 0.010 0.990 0.005

J6
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TABLE 15
C:MPARISON OF ACTUAL (p) AND THEORETICAL (p) CUMULATIVE

.PROPORTIONS AT 10 POINTS OF THE t-DISTRIBUTION
INPUT PARAMETERS : o(Tx.rY')' - ,00

p(X,X°) = .90
p(Y,¥*) = .80

P i 4 7/5, P 7/ p-P
p r(TxlTy) r(Tx'TY) 1 3 . TX’TY) r (Tx'ry)

N =15, d.£. = 14
0.005 0.020 -0.015 0.004 0.001
.010 .031 - .021 .009 .001
.025 .049 - .024 .016 .009
0050 0068 - 0018 0032 0018
.100 »115 - 015 .058 .042
900 . +910 - .010 960 - ,060
«950 «946 .004 973 - .023
975 .968 .007 .982 - .007
0990 0975 0015 0992 - 0002
0.995 0.978 0.017 0.997 -0.002

N = 30, d.f. = 29
0.005 0.011 -0.006 0.002 0.003
.010 015 - .005 -+ ,004 .006
.025 .038 - .013 .007 .018
.050 .060 - ,010 .015 .035
.100 .103 - .003 . +041 .059
.900 887 .013 «955 - .055
950 931 .019 «979 - .029
975 «959 .016 ~.992 - ,017
.990 .978 .012 .995 - .,005
0.995 0.989 0.006 0.997 -0.002

N = 60, dof. = 59
0.005 0.007 -0.002 0.000 0.005
016 .018 - .008 .001 .009
025 .033 - .008 .004 .021
.050 051 - ,001 .014 .036
.100 101 - ,001 .037 .067
. 900 904 - 004 «953 - .053
«950 «935 .015 .984 ~ .034
075 <900 .015 .996 - 021
.990 .982 .008 .999 - .009
0.995 0.990 0.005 0.999 -0.004

arpay
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TABLE 16

COMPARLSON OF ACTUAL (p) AND THEORETICAL (p) CUMULATIVE
PROPORTIONS AT 10 POINTS OF THE t~-DISTRIBUTION
© " INPUT PARAMETERS: o(Ty,T,) = .00

p(X,X°) = .80
p(Y,Y?) = .80

P p-=P 7/5 P 7/5 P=-P

N =15, d.f. = 14
0.005 .0.016 -0.011 0.003 0.002
.010 .025 - .015 .006 .004
.025 .035 - .010 .013 .012
.050 .058 - ,008 .025 .025
.100 - .106 - ,006 .040 .060
.900 .875 .025 .955 - .055
«950 .932 .018 .982 - .032
975 961 014 .988 - .013
.990 .982 .008 .993 - .003
0.995 0.988 0.007 0.996 -0.001

N = 30, d.f. = 29
0.005 0.012 -0.007 0.003 0.002
.010 .018 - .008 00> .005
.025 .033 - .008 011 014
.050 .062 - .012 017 .037
.100 .096 .004 .034 .066
.900 . 885 015 .954 - .054
.950 .936 014 .985 - .035
975 «959 016 .995 - ,020
.990 .985 .005 .998 - .008
0.995 0.991 0.004 1.000 -0.005

N = 00, d.f. = 59
0.0G) 0.011 ~0.006 0.000 0.005
L0100 014 - 004 .000 .010
025 025 .00N .003 .022
.050 .055 - .005 V13 037
100 113 - .013 .020 074
.900 .892 .008 .963 -~ ,063
«9H0 940 010 901 = 041
975 905 .010 .995 - .020
<9490 990 .000 998 - .008
0.995 0.992 0.003 0.999 -0.004
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TABLE 17

COMI'ARISON OF ACTUAL (p) AND TUEORETICAL (p) CUMULATIVE

PROPORTIONS Al 10 POINTS OF THE t~-DISTRIBUTION

p(X,X°) = .90
p(Y,¥°) = .50

A

P p-9 79, P 77 P = P
p e(TyaTy) (T Ty) & 75 (Ty,T 3(TyTy)
N =15, d.f. = 14

0.005 0.014 -0.009 0.000 0.005
.010 .021 - 011 .003 .007
.025 .035 - ,010 .008 017
.050 057 - ,007 022 .028
.100 .095 .N05 .040 - .060
.900 907 - ,007 946 - 046
.950 .933 017 973 - ,023
975 957 018 .986 - 011
.990 975 .015 .990 .000

0.995 0.983 0.012 0.996 -0.001

N = 30, d.f. = 29

0.005 0.011 -0.006 0.002 0.003
010 017 - ,007 .004 .006
.025 .028 - ,003 .008 017
050 .053 - 003 015 035
.100 107 - 007 031 .069
.900 . 895 .N05 964 - ,064
«950 941 . 009 .985 - ,035
975 .968 .007 «990 - o,015
.990 .984 .006 .998 - ,008

0.995 0.989 0.006 0.999 -0.004

N = 60, d.f.

0.005% 0.010 -~0.005 0.000 0.005
010 O0l5 - 005 000 010
AN 033 - 008 007 .018
L0H0 062 - 012 011 .039
. 100 008 002 034 0606
. 900 901 - .00l 967 -~ 067
RTS! 053 - ,003 991 - 041
A 971 L004 997 - 022
L0a0) L0989 001 .999 - 009

0,915 0.997 -J.002 0.999 -0.004
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.950, .975, .990, and .995 percentile poi-ts are summarized in
Table 18 for r(T,,TI,) and in Table 19 for 57/5(25'23) for each
combination of tgé IAput parameters.

The following results are summarized from the data presented
in Tables 3-19.

The direction of the difference between the theoretical and
actual cumulative proportions of jackknife statistics which were
at or below the 10 percentile points of comparison varied across
the different values of p(Tx,TY). For example, with p(T ,T ) =
1.00 and for each combination of N and pair of reliabxlitxes,
the actual cumulative proportions exceeded the theoretical
proportions at the upper five percentile points for 57/5(2x,23).
At the lower five percentile points, the reverse was true 7se;
Tables 3-5). In contrast, with E(EavEg) = .50 and for each
combination of N and pair of reliabilities, the actual cumulative
propcrtion of jackknife statistics obtained for £7/S(EX'E¥)
exceeded the theoretical proportion at the five lower percentile
points (see Tables 12-14).

The jackknife was sensitive to changes in the values of the
reliabilities for each combination of p (Tx,Ty) and N. In general,
the solutions obtained for p (X,X') = .90, p(¥,X') = .50 were
superior to the solutions obtained with the two higher pairs of
reliabilities. Comparison of this result with the results
describing the shape of the distribution of E(EX,EY) (see Table 1)
suggests that the best performance of the jackk;if; will be
obtained in those situations in which the sampling distribution
of the statistic to be jackknifed is approximately normally

distributed with an appreciable variance.

40
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TABLE 18

MEAN OF ARSOLUTE DIFFERENCES BETWEEN THEORETICAL AND
ACTUAL PROPORTIONS OF JACKRNIFE STATISTICS AT 10
PERCENTILE POINTS OF THE t-DISTRIBUTION
STATISTIC JACKINIFED: r(Tx.TY)

- Mean Absolute Difference
p(Tx.TY) p(X,X*) p(Y,Y*) N=15 N= 30 N = 60

1.00 0.90 0.80 0.0235 0.0182 0.0114
1.00 .80 .80 .0257 .0206 .0125
1.00 «90 .30 0244 0244 .0207
0.90 .90 .80 0449 .0440 .0227
.90 80 .80 .0296 .0331 .0230
.90 .90 50 0221 .0205 .0135
.80 .90 .80 0431 .0351 0247
.80 .80 .80 +0413 .0380 +0264
.80 .90 .30 .0155 0134 .0150
50 .90 .80 .0403 .0332 0171
50 .80 .80 .0359 .0248 .0200
«30 .90 30 .0161 0171 .0165
.00 .90 .80 .0146 .0103 .0067
.00 .80 .80 .0122 .0093 .0059
0.00 0.90 0.50 0.0111 0.0059 0.0043

Overall Mean Absolute Difference 0.0269 0.0231 0.0160
Overall Mean Absolute Difference,
p(Tx,TY)>.00 0.031 0.026: 0.0196

Notc .~—The mean absolute difference equals the mean of
the absolute differences at the .005, .010, .025, .050, .100,
.900, .950, .975, .990, and .995 percentile points of the t-
distribution with the correct degrees of freedom, i.e.,

10
: |p - B
e i=1 .
Mean Absolute Difference =
10
The overall moan absogute diTference equals the mean of the

wean absolute diirerences across each combination of QKIK’IY)’

p(X,X7), and o(Y,Y") within cach value of N.

o a1
ERIC

Aruitoxt provided by Eic:



41

TABLE 19

MEAN OF ABSOLL!" . DIFFERENCES DUTWEEN THEORETICAL AND
ACTUAL PROPURT TONS OF JACKKNIFE STATISTICS AT 10
PLRCENTII © POINTS “F THE t-DISTRIBUTION
STATISTIC JACRKNIFED: r'/s(Tx.Ty)

- Mean Absolute NDifference
p(Tx.TY) p(x.x‘) p(Y,Y") N =15 N = 30 N = 60

1.00 0.90 0.80 0.0232 0.0170 0.0113

1.00 | .80 .80 .0254 .0203 .0126
1.00 .90 .50 © 0216 0211 = .0217
0.90 90 .80 0417 .0418 .0208
.90 .80 .80 .0253 .0306 .0218
.90 .90 .50 .0188 .0189 .0i26
.80 .90 .80 .0356 .0306 .0216
.80 .80 .80 .0333 -~ .0319 .0219
.80 .90 .50 .0085 = .0099 .0094
30 .90 .80 .0308 .0283 .0095
.50 .80 .80 .0290 .0209 .0120
.50 .90 .50 .0133 .0173 .0087
.00 .90 .80 .0165 .0229 .0259
.00 .80 .80 .0207 .0246 .0284
0.00 0.90 0.50 0.0198 0.0256 0.0281

Overall Meah Absolute Difference 0.0242 ° 0.0241 0.0178

Overall Mean Absolute Difference,
C(TY,TY)>.OO 0.0255 0.0241 0.0153

Note.~The mean absolute difference equals the mean of
the absolute differences at the .005, .010, .025, .050, .100,
.900, .950, .975, .990, and .995 vercentile points of the t-
distribution with the correct degrees of freedom, i.e.,

10
t |p~p
] 1=
Hean Absolute Difference = 110
The ovecall mean absolu | difference equals e mean of the
mesmn absolute difference. across each combination of QKIQ’ISJ’

2 ANX )y and (Y,Y ) within cach value of N.
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There was a general tendency for the performance of the
jackknife to improve for each combination of p(Ty,Ty) and pair
of reliabilities as the value of N increased. Tgé ;§erall
performance of the jackknife on 57/5(2x,2¥) was somewhat superior
to the overall performance of the jackiﬁizé on r(Tx,Ty) for o(Ty,Ty)
greater than zero. With g}gx,gy) > 00, the overaIl ;éan of th; B
means of the absolute differ;hc:s between the theoretical and
actual cumulative proportions at the 10 percentile points for
EF/S(EX'Ey) was less than the corresponding overall mean for
g(gx,g;).— For ;7/5(gx,gx) the overall mean absolute differences
equ;n;d .0255 with x_v_-= Is. .0241 with N = 30, and .0153 with

N = 60. The corresponding differences for r(T,,T,) equalled
.0310, .0267, and .0196. For g(gx,gy) = ,00, :he—jackknife on
g(gx,gy) yielded a considerably superior solution (see Tables 18
and-19;.

For some of the combinations of the input parameters, the
proportions of jackknife statistics falling in the critical
regions corresponding to a two-tailed hypothesis text were not
equal. For example, for P(Tx,Ty) = .90, p(X,X') = .90, p(¥,¥") =
.80, and N = 60, the probability of a Type I error equalled .068
(compared to the nominal value of .050). This indicates that
68 out of the 1000 statistics fell in the region of rejection.
But in this case, 57 out of the 68 values fell in the region
above p (Tx,Ty) = .90 and only 11 in the region below p (Ty,Ty) =
.90. lence, the Type 1 errors were not evenly distribut;a

between the acceptance of p(lx,Ty) < .90 and the acceptance of
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gﬁg&,g!) > .90. For other combinations of the input parameters
the proportions of jackknife statistics were more evenly divided,
but the actual proportions were sometimes less, and other times
greater than the nominal proportions.

To gain further information on the acceptability of the
jackknife procedure, the results of the jackknife on E(TyoTy)
and 57/5(1x,g&) with N = 30 and N = 60 were compared to :he-
results us:hg-hormal curve theory.3 Formula (3) was used to
compute the standard error of r(Ty,Ty). The corresponding mean
absolute differences for both the-ja;kknife and the normal
curve procedure are summarized in Tables 20 and 21. With N =
30, the solution obtained using normal curve theory was, in general,
inferior to the jackknife solutions on r(T,,T,) and on 57/5(25,31).
The overall means of the absolute differen;és-fetween the theo-
retical and actual cumulative proportions at the 10 points of
comparison across the 15 combinations of p (Tyx,Ty), p (X,X'), and
p(Y,Y') were .0231 for the jackknife on g(nggyy, .0241 for the
jackknife on 57/5(2§,2£), and .0262 for the—ho;ﬁal curve procedure.
With N = 60, there was closer agreement between the three overall
solutions. The overall means of the absolute difference were in
this case .0160 for the jackknife on r(Ty,Ty), .0178 for the

jackknife on £7/5(2x,gy), and .0166 for the normal curve procedure.

3 Normal curve procedures were not employed for N = 15. Preliminary
tests on the utility of equation (3) revealed that, with N = 15,
the mean values for the standard error obtained from equation (3)
were generally quite different from the observed standard devia-
tion of the sampling distribution of E(gx,gy).

©

ERIC 44

Aruitoxt provided by Eic:

24



44

TABLE 92q

MEAN OF AULSOLUTE DIFTERENCES BETWEUN TUEORETICAL AND ACTUAL
CUMULATTVE PROPORTIONS OF JACKKNIFE STATISTICS AT 10
PERCELTILE POINTS OF THE t-DLSTRIBUTION AND MUAN
OF ABSOLUTE DIFFERALNCES BETWLEN THCORETICAL AND ACTUAL
CUMULATLVE PROPORTIONS OF z-STATISTIC AT 10 PERCENTILE
POINTS OF TIE UNIT NORMAL N = 30

>

Mean Ahiolute Difference
p(Tx.TY) p(X,X") p(Y,Y") ’ Jackknife on Normal

e/ S(Tx.TY) r(Tx,TY) Curve

1.00 0.90 0.80 0.0170 0.0182 0.0279
1.00 .80 . 80 .0203 .0206 .0180
1.00 .90 .50 0211 0224 .0256
0.90 .90 .80 0418 .0440 .0476
.90 .80 .80 .0306 .0331 .0370
.90 .90 .50 .0189 .0205 .0165
.80 .90 .80 .0306 .0351 .0362
.80 .80 .80 .0319. .0380 .0408
.80 .90 .50 .0099 .0134 0175
50 .90 .80 .0283 .0332 .0351
.80 .80 . 80 .0209 .0248 .0288
.50 .90 .50 .0173 0171 .0217
.00 .90 .80 .0229 .0103 .0157
.00 . 80 .80 0246 .0093 .0129
0.00 0.90 0.50 0.0256 0.0059 0.0121
Overall Mean Absolute Difference 0.0241 0.0231 0.0262

L -

Note.—1he mean absolute difference equals the mean of
the absolute differences at the .005, .010, .025, .050, .100,
.900, .950, .975, .990, and .995 percentile points of the t-
distribution with the correct degrecs of freedom, i.e.,
10
5 |p = pl
t=1

e Abuotute DEffereae s e T .

The overall twean o “olute dif ference cquals the wean of the mean
absolute differences across cach combination of u(T",TY), H(5,X7),

. ) . . . A =
sad (YT within ceeh valoe ol W, -
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TABLE 21

LEAN OF ABSOLUTE o IFFERENCES BETUWEEN THEORETICAL AND AC 'UAL
CUMULATIVE PROPORTIONS OF JACKKNIFE STATISTICS AT 10
PERCi: [ILE POINTS OF THE t-~DISTRIBUTION AND MEAN
OF ABSOLUTE DIFFERENCES BETUEEN THEORETICAL AND ACTU/.
CUMULATIVE PROPORTIONS OF z-STATISTIC AT 10 PERCENTILE
POINTS OF THE UNIT NORMAL N = 60

Mean Absolute Difference
p(Tx,TY) o (X,X%) p(Y,Y*) Jackknife on Normal

7
r /5(TX,TY) r(Tx,TY) Curve

1.00 0.90 0.80 0.0113 0.0114 0.0074
1.00 . .80 .80 .0126 .0125 .0110
1.00 _ .90 .50 .0217 .0207 0172
0.90 .90 .80 .0208 .0227 .0256
.90 .80 .80 .0218 .0230 0244
.90 .90 .50 .0126 .0135 .0108
.80 .90 .80 .0216 0247 0254
.80 .80 ~80 0219 .0264 .0255
.80 .90 .50 .0094 0150 .0193
.50 .90 .80 ,0095 0171 .0132
.50 .80 .80 .0120 .0200 0194
.50 .90 S50 .0087 .0165 .0209
.00 .90 .80 .0259 .0067 .0086
.00 .80 .80 0284 .0059 .0079
.00 0.90 0.50 0.0281 0.0043 0.0069
Overall Mean Absolute Difference 0.0178 0.0160 0.0166

46
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Conclusions
The complexity of the sampling distribution of the
estimate of the disattenuated correlation coefficient
indicates that it is unlikely that a mathematical
model can be formulated to describe the sampling dis-
tribution of x(Ty,Ty).
The performance ;f ;he jackknife on the disattenuated
correlation coefficient was sensitive to changes in the
values of the input parameters. The performance was
better for those combinations of the input parameters
which yielded a sampling distribution of the statistic
to be jackknifed that was more normally distributed
and which had an appreciable variance.
The performance of the jackknife on ;7/5(gx,gy) was
slightly superior to the performance of th; j;ckknife

on r(T ,T,) greater than zero. However, the discrepancies

between the two performances became negligible as N
increased.

The jackknife can be used to set approximate confidence
intervals about E(EX’EY)’ thereby communicating a general
idea of the precisigh ;f the estimate obtained. However,
the jackknife should not be used to perform directional
hypotheses tests.

The jackkrife fared well in comparison with the normal

curve procedure. In the case of small N (N = 30), the

jackknife was superior to the normal curve procedure.

11 ':/'
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The jackknife was originally proposed as a generally
applicable procedure to construct approximate confidence
intervals. The results obtained in this research support this
claim for the disattenuated correlation coefficient, particularly
for moderate size N(N 2 30). The jackknife is conceptually
simple. Alternate procedures reguire the derivation of complex
formulas for determining an adequate estimate of the standard
error (vis., equation (3)). Current trends are for computer
calculations to become less expensive and programming more
expensive. If this trend continues, the advantages of first
checking tiae jackknife to provide an estimate of the precision
of a particular statistic, rather than struggling with the
derivation of approximations of standard errors and hoping for
normality, should become even more appealing as a method for
commuinicating the precision of a given statistic. For situations
in wuich the sample size is quite large, division of the sample
into sub-samples larger than one, should reduce the computational
time while at the same time retaining an acceptable degree of

accuracy.

:{f
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